Tests of Linear Hypotheses in the ANOVA under Heteroscedasticity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tests of linear hypotheses in the ANOVA under heteroscedasticity

It is often of interest to undertake a general linear hypothesis testing (GLHT) problem in the one-way ANOVA without assuming the equality of the group variances. When the equality of the group variances is valid, it is well known that the GLHT problem can be solved by the classical F-test. The classical F test, however, may lead to misleading conclusions when the variance homogeneity assumptio...

متن کامل

the washback effect of discretepoint vs. integrative tests on the retention of content in knowledge tests

در این پایان نامه تاثیر دو نوع تست جزیی نگر و کلی نگر بر به یادسپاری محتوا ارزیابی شده که نتایج نشان دهندهکارایی تستهای کلی نگر بیشتر از سایر آزمونها است

15 صفحه اول

A New Test of Linear Hypotheses in OLS Regression Under Heteroscedasticity of Unknown Form

When the errors in an ordinary least squares (OLS) regression model are heteroscedastic, hypothesis tests involving the regression coefficients can have Type I error rates that are far from the nominal significance level. Asymptotically, this problem can be rectified with the use of a heteroscedasticity-consistent covariance matrix (HCCM) estimator. However, many HCCM estimators do not perform ...

متن کامل

Linear classifier design under heteroscedasticity in Linear Discriminant Analysis

Under normality and homoscedasticity assumptions, Linear Discriminant Analysis (LDA) is known to be optimal in terms of minimising the Bayes error for binary classification. In the heteroscedastic case, LDA is not guaranteed to minimise this error. Assuming heteroscedasticity, we derive a linear classifier, the Gaussian Linear Discriminant (GLD), that directly minimises the Bayes error for bina...

متن کامل

Statistical Inference on the General Linear Models under Heteroscedasticity

Assuming a general linear model with unknown and possibly unequal normal error variances, the interest is to develop a one-sample procedure to handle the statistical problems involving point estimation, confidence region, and general linear hypotheses on regression parameters. The sampling procedure is to split up each single sample of size ni at a controllable regressor’s data point into two p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Statistics and Probability

سال: 2013

ISSN: 2307-9045

DOI: 10.14419/ijasp.v1i2.908